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“Homemade” Neutron Transport Monte Carlo code
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Fig. 1. Layoui of the experiment.

HEP Experiment: Electroproduction of ©* (e+p = e+n+n*) at threshold
( NINA 5 GeV electron accelerator at Daresbury Laboratory, UK)
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Fig. 3. Schematic diagram of the neutron counter

A. Del Guerra, et al. “A large aperture neutron time-of-flight spectrometer “Nuclear Instruments
and Methods, Volume 135(2), 1976, 307-318
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Fig. 1. n—C total, n—C inelastic and n—p total cross sections data. The full hines show the cross sections used in the Monte Carlo
program.

A. Del Guerra, “A compilation of n-p and n-C cross sections and their use in a Monte Carlo program to calculate

the neutron detection efficiency in plastic scintillator in the energy range 1-300 MeV”, Nuclear Instruments and
Methods, Volume 135(2), 1976, 337-352-
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G. Betti, A. Del Guerra, et al., “Efficiency and spatial resolution measurements of a modular neutron detector in
8

the kinetic energy range 15-120 MeV”, Nuclear Instruments and Methods, Volume 135(2), 1976, 319-330.



A bite of History

First Monte Carlo) applications using computers were done at Los Alamos
(1943), by Metropolis, Ulam and Von Neumann with the ENIAC® for neutron
diffusion problems =»MCNP (Neutron Scattering and Absorption in U and Pu)

The problem of first interaction:
1-exp (-ux) = R [ with O<R<1] ; exp (-ux) =1-R; -ux=In(1-R)
-ux =In (R) ; x=-1/ux (In R)

Pseudo-random generator=2 R

The analog computer: the FERMIAC

(1) Stan Ulam suggested the name after “Monte Carlo Casino”: he was a poker player.

2) Electronic Numerical Integrator And Computer
) Invented by Fermi and built by Percy King in 1947. Used at LANL till 1949 .
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The FERMIAC

Fig. 1. — The Fermiac on display at the Bradbury Science Museum in Los Alamos. The Fermiac
is a 30 cm long hand-operated computer conceived to study the change in time of the neutron
population in a nuclear device, via the Monte Carlo method. The neutron population would
either increase or decrease or remain constant in time, representing a supercritical, subcritical

or critical system respectively.

F. Coccetti, “The Fermiac or Fermi’s Trolley”, || Nuovo Cimento 39C, 2016 (296), DOI 10.1393/ncc/i2016-16296-7
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How does it works? (1)
“The Fermiac mainly consists of three parts:

1. The lucite platform, that serves as a neutron
direction selector

2. The rear drum, that measures the elapsed time
based on the velocity of the particular neutron
in question

3. The front drum, that measures the distance
traveled by the neutron between subsequent
collisions based on neutron velocity and the
properties of the material being traversed”

(1) From: F.Coccetti, 2016

Stan Ulam with the FERMIAC in his hand, the
analog computer invented by Fermi for neutron
transport study (from: F. Coccetti, 2016)

12



The Encounter with Walter Ralph Nelson

From left to right: Walter Ralph Nelson, Alan Nahum, Alberto Del Guerra in front of Nelson’s house at Palo Altc



* The Ettore Majorana Center, ERICE (TP), Italy
Director of the Center: Antonino Zichichi
* The International School of Radiation Damage and Protection
Director of the School: Alessandro Rindi (LBL, USA)

First Course in 1976
* Advances in Radiation Dosimetry and Medicine
Director of the Course: Ralph Thomas (LBL,USA)
Speakers: J.V.Bailey, S.B:Curtis, E.Freytag, P.J.Gollon, M.Ladu, W.R.Nelson,
M.Pelliccioni, V.Perez- Mendez, S.Pszona, H.H.Rossi, J.Routti, G.R. Stevenson

Second Course in 1978
 Computer Techniques in Radiation Transport and Dosimetry
Directors of the Course: W.R.Nelson and T. Jenkins (STANFORD,USA)
Speakers: G.R.Stevenson, K,O’Brien, W.W.Engle, T.A.Gabriel, C.Ponti, W.R.Nelson,
A.Van Ginneken, T.Amstrong, J.Ranft, J.T.Routti, . Nakamura
Monte Carlo programs discussed: (n-ytransport) ANISN,DOT, MORSE; (e-y) EGS,ETRAN
(with the First Medical Applications); (Hadronic cascade) AEGIS,CASIM, FLUKA, HETC |,




Why did | fall in love with EGS?
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Our first application of EGS4: 90° Compton Scattering Tomography 2

The principle of this technique is to irradiate a biological target with a narrow
monoenergetic X- or y-ray beam (100-2000 keV) and to detect the fluence of
photons scattered into a well defined solid angle in order to obtain
information on the mass density of the target.

Since the dominant process is Compton scattering, the fluence is proportional
to the electron density, hence to the mass density. Original application was in
densitometry as an alternative technique to trasmission densitometry.

The COSCAT experiment

Application to pulmonary studies at the CNR Institute of Physiology (Pisa,
ltaly): line source, 90° scattering, gamma camera.

(1) R.L.Clark and G. Van Dick, Phys. Med. Biol. 1959(4),159-166
(2) J.J.Battista and M.J.Bronskill, Phys. Med. Biol. 1978(23), 81-99



90° Compton Tomography:
the COSCAT experiment

Imaging

Fig. 1. Schematic drawing of the COSCAT apparatus: a 293Hg line
source collimated to a narrow planar beam irradiates a section of the

human thorax; a large-field gamma camera detects the 90° Compton-
scattered photons.

A. Del Guerra, et al., "4 Detailed Monte Carlo Study of Multiple

Scattering Contamination in Compton Tomography at 90”, IEEE
Transactions on Medical Imaging, vol. 1(2), 1982,147-152.
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Fig. B. Comparison of the Monte Carle results with the experimental
data taken with a sawdust phantom (density 0.3 g/cm?) as described
in the inset, The solid circles are the experimental raw data, and the
superimposed histogram is the Monte Carle simulation. The open
circles are the experimental data after the attenuation correction has
been applicd and the solid line ) is a linear fit to these points, The
solid line &) is the effect of applying a further geometric correction
for the beam divergence. The total-to-single scattering ratio, as ob-

tained by Monte Carlo calculation, is also superimposed as a histogram
(right-hand scale).



The High Spatial resolution Positron Emission Tomograph (HISPET)

2cm thick converters

S
A Hexagonal Positron Emission Tomography

camera based on MWPC (1)

cathode /anode/cathede
wire planes

Expected figures of merit:

1-High Spatial Resolution: few mm (FWHM)
2- Long axial coverage: 45 cm

3- Low cost: gas chamber w/ lead-glass tube
converter, instead of scintillator/PM

B5¢m

(1) A.Del Guerra et al., “ Medical Positron Imaging ke 45em — |
with a Dense Drift Space Multiwire Proportional
Chamber”, IEEE TMI,1(1) 1982, 4-11 E cm 4

Fig. 7. Proposed Positron Camera made of six modules arranged to
form a hexagonal prism. Each module has a 45 x 45 cm? active
area and has two 2-cm thick lead glass tube converters. 13



The nightmare of the simulation
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THE SIGNAL THAT ARRIVES EARLIEST IN TIME).®

4,) SUBSEQUENTLY, THE POINT OF INTERACTION IS TRANSLATED"
TO THE MIDDLE OF THE CONVERTER TO ACCOUNT FOR"
PARALLAX ERROR (IPARAL > 0) AND THE SPATIAL"
RESOLUTION OF THE DETECTOR IS SAMPLED AND"
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A) POSITROM K.E. DISTRIBUTION"
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THE POINT AND LINE SPREAD FUNCTIONS ARE WEIGHTED"
IN ORDER TO ACCOUNT FOR PHASE SPACE (IDELTA > 0)."
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GAMMAS IS PROVIDED ON RESUEST (IPLOT > 0)."
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The simulation of the converter
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Fig. 1. Schematic drawing of a MWPC equipped with a lead Fig. 2. Calculated efficiency of a .1 cm thick mnvcrtf:r as a
glass tube converter plane for PET imaging. function of the photon energy (solid lines); O — experimental
data.

A.Del Guerra et al., “3-D PET with MWPCs: preliminary tests with the HISPET prototype”,

Nuclear Instruments and Methods A269, 1988, 425-429. 21



HISPET Spatial resolution
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SMALL ANIMAL PET: YAPPET

The first research prototype
(University of Ferrara, 1998)

The first commercial prototype
(ISE, Pisa- University of Pisa, 2003)

23



Small scintillator matrix coincidence experiment vs simulation
(25 match-like 3x3x20mm?3 YAP cristals coupled to R2486-06 Hamamatsu PSPMT)
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Fig. 1 Coincidence pulse height spectrum for a * Na source: experimental results (a) and Monte Carlo simulation (b).
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Fig. 2 Spatial resolution for a 0.8 mm diameter ** Na source: experimental results (a) and Monte Carlo simulation (b).

D. Bollini, A. Del Guerra et al.," Sub-millimeter planar imaging with positron emitters: EGS4 code
simulation and experimental results," IEEE Transactions on Nuclear Science, 44(4),1997, 1499-1502.
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A. Bevilacqua et al., "' A 3-D Monte Carlo simulation of a small animal positron emission tomograph with
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Digital radiography with solid state detectors (Si/Ge/Hgl,/CdTe)
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W. Bencivelli, et al. , “Use of EGS4 for the evaluation of the performance of a silicon detector for X-ray digital radiography”,
Nuclear Instruments and Methods A, 305(3) 1991, 574-580.
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Simulation of the imaging capability of a two-density phantom mimicking a breast calcification: (a) schematic drawing
of the phantom and the two-slab detector; (b) 2D image of the phantom: cross view(top), grey-level representation as

obtained from the simulation, pixel dimension 200x200 um? (bottom); ( c) profile cut through the calcification.
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PET-based hadrontherapy treatment verification (PTRAN code)

Energy deposition (Ep=140.5 MeV) - Planar view Energy deposition (Ep=140.5 MeV)- Lego plot
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Fig. 3. Energy loss distribution in the zx plane (at y = 0), as obtained with a proton beam of 140.5 MeV in water: (a) isocontour
plot for a 2 mm wide beam; (b) lego plot for a 12 mm wide beam.

A. Del Guerra, et al., “A Monte Carlo simulation of the possible use of Positron Emission Tomography in
proton radiotherapy”, Nuclear Instruments and Methods in Physics Research, A345(2), 1994, 379-384. 29
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Fig. 6. (a) Distribution of 50 nuclei as produced by 140.5 MeV protons in water along the zx plane at y =0 for a 12 mm wide
beam; (b) corresponding distribution of BN,
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a (mb)

Rationale:

The p interactions within the human body produce 3* emitters radioactive atoms. The activity distribution is
somehow related to the dose distribution. In particular the activity fall-off can give an indication of the Bragg-peak
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Positron Emitter nuclei production cross section vs proton energy for: (Left)*®O, (Center) 13N, (Right) *C

A.Del Guerra, G. Di Domenico, D. Mukhopadhayay ,“PET dosimetry in proton radiotherapy:
a Monte Carlo study, In Applied Radiation and Isotopes”, 48(10-12), 1997, 1617-1624.
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Activity (arbitrary units)
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Fig. 5. Relative comparison between sxperimental data by Oelflke or al. (1996) and simulated activity
curve. The calculated energy deposition vs = is also plotted. (a) After 23 min of irradiation with 62 MeV
protons in Lucite, scan acquisition stared 40 min after the end of irradiatzon. (b) Afller 26 min of
irradiation with 110 MeV protons in Lucite; scan acguisition started 24 min after the end of irradiation.
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PET-based hadrontherapy treatment verification (state of the art)
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The 11571~ Project

(see talk by Elisa Fiorina — Tuesday 9.30 - Aula Magna)

DOSE PROFILER BI-MODAL IMAGING SYSTEM

Prompt secondary for particle range monitoring and verification
particles imaging ’
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EEG

BRAIN PET: the TRIMAGE project

The MR system will be based on a very compact 1.5 T cryogen free superconducting
magnet, with an integrated PET system:

- Reduction in cost for installation and maintenance.
- Reduction in claustrophobia effects.

- Better physiological measures since the patient’s arm will be accessible.

- High sensitivity of the PET detector

LYSO/SIPM-based PET
Cryogen-free
1.56Tmagnet e |

Dedicated
orain RF coil —
+ EEG cap
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PET

The PET System Monte Carlo Performance G TRImage

EEG

- High Spatial resolution 2 mm (DOI)
(a factor 2 better than a clinical PET/MR)

- High Efficiency (6.8% at CFOV)
(at least a factor 3 better than a clinical PET/MR)

- Axial FOV = 150mm

(almost a factor 2 shorter than clinical PET/MR)

-Transaxial FOV =110 mm radius
(ok for the head)
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TAKE HOME MESSAGE

Monte Carlo is not a magic black box

Be sceptical of the results of anybody else’s
Monte Carlo computer code.
Be especially sceptical of your own code.
No matter how you word your disclaimer, you will
still “carry the can” filled with your own bugs (BLIF)
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